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Abstract

Most recent research of neural networks in the field of computer vision has fo-
cused on improving accuracy of point predictions by developing various network
architectures or learning algorithms. Uncertainty quantification accompanied by
point estimation can lead to a more informed decision, and the quality of prediction
can be improved. In medical imaging applications, assessment of uncertainty
could potentially reduce untoward outcomes due to suboptimal decisions. In this
paper, we invoke a Bayesian neural network and propose a natural way to quantify
uncertainty in classification problems by decomposing predictive uncertainty into
two parts, aleatoric and epistemic uncertainty. The proposed method takes into
account discrete nature of the outcome, yielding correct interpretation of each
uncertainty. We demonstrate that the proposed uncertainty quantification method
provides additional insight to the point prediction using images from the Ischemic
Stroke Lesion Segmentation Challenge.

1 Introduction

While deep neural networks have shown outstanding performances in many different computer
vision tasks and the field of medical imaging analysis [Havaei et al., 2017, Maier et al., 2017,
Litjens et al., 2017], less attention has been paid to assessing uncertainty in neural network outputs.
Probabilistic interpretations via uncertainty quantification are important because (1) absences of
sufficient understanding of model outputs may provide suboptimal results and (2) neural networks
are subject to overfitting, so making decisions based on point prediction alone may provide incorrect
classifications with spuriously high confidence [Su et al., 2017].

In this paper, we utilize Bayesian neural network models to capture uncertainties in classification
problems. Bayesian methods are mathematically sophisticated and allow rich probabilistic interpreta-
tions via obtaining predictive distribution. Although exact Bayesian inferences have been considered
to be computationally intractable, Gal [2016] recently showed that a typical optimization of dropout
neural networks is equivalent to Bayesian learning via variational inference with a specific variational
distribution. This provided a practical solution to estimate predictive uncertainty.

In Bayesian modeling, uncertainties are characterized as either aleatoric uncertainty capturing
noise inherent in the observations or epistemic uncertainty which accounts for model uncertainty
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[Der Kiureghian and Ditlevsen, 2009]. Kendall and Gal [2017] decomposed the predictive uncertainty
into the two types of uncertainties by explicitly modeling the variability of the last layer of neural
network outputs. However, existing studies on the uncertainty quantification for classification have
utilized extra parameters for variances without reflecting the relationship between the variance and
the mean.

Our main contributions of this paper are:

1. We propose a new method of quantifying uncertainties in classification using Bayesian
neural networks. Our method exploits the relationship between the variance and the mean of
a multinomial random variable and avoids estimation of extra parameters for the variance.

2. We demonstrate the proposed method using the two Ischemic Stroke Lesion Segmentation
Challenge (ISLES) datasets with different effective sample sizes. Our results demonstrate
interpretable uncertainty maps, and exhibit dependence between the epistemic uncertainty
and the effective sample size.

2 Bayesian neural networks

Let D = {(xi, yi)}Ni=1 be a realization of independently and identically distributed random variables
where xi ∈ Rd and yi = (y

(1)
i , . . . , y

(K)
i ) ∈ {0, 1}K are the ith input and its corresponding one-hot

encoded categorical output, respectively. Here, N denotes the sample size, d is the dimension of
input variables, and K is the number of different classes. Assuming the Bayesian neural network
model, we place a prior distribution p(ω) on a parameter vector ω ∈ Ω, weights and bias vectors in a
neural network, resulting posterior distribution

p(ω | D) =
p(D | ω)p(ω)

p(D)
=

∏N
i=1 p(yi | xi, ω)p(ω)

p(D)
,

and predictive distribution

p(y∗ | x∗,D) =

∫
Ω

p(y∗ | x∗, ω)p(ω | D)dω,

for a new input x∗ and a new output y∗. Denoting by fω(x) = (fω1 (x), . . . , fωK(x)) the last K-
dimensional pre-activated linear output of the neural network with a parameter vector ω, then the
predictive probability is given by

p{y(k) = 1 | x, ω} = p{y(k) = 1 | fω(x)} =
exp{fωk (x)}∑K
j=1 exp{fωj (x)}

.

While this formalization is simple, the learning is often tricky because calculating the posterior
p(ω | D) requires an integration with respect to the whole parameter space Ω for which a closed
form often does not exist. MacKay [1992] proposed the a Laplace approximation of the posterior but
performance is often limited due to poor approximation.

Neal [1993] introduced the Hamiltonian Monte Carlo, a Markov Chain Monte Carlo (MCMC)
sampling approach using Hamiltonian dynamics, to learn Bayesian neural networks. This yields a
principled set of posterior samples without direct calculation of the posterior but computationally
prohibitive.

An alternative Bayesian method is a variational inference [Graves, 2011, Blundell et al., 2015, Louizos
and Welling, 2016, 2017a] which approximates the posterior distribution by a tractable variational
distribution qθ(ω) indexed by a variational parameter θ. The optimal variational distribution is the
closest distribution to the posterior among the pre-determined family Q = {qθ(ω)}. The closeness is
often measured by the Kullback-Leibler (KL) divergence between qθ(ω) and p(ω | D) defined by

KL{qθ(ω)‖p(ω | D)} :=

∫
Ω

qθ(ω) log
qθ(ω)

p(ω | D)
dω.

Minimizing the KL divergence is equivalent to minimizing the negative evidence lower bound given
by

−
∫

Ω

qθ(ω) log p(y | x, ω)dω +KL{qθ(ω)‖p(ω)}. (1)
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Variational inference converts standard Bayesian learning from integration to optimization problem.
This conversion allows online learning in Bayesian inference which is originally suited for batch
learning due to MCMC sampling.

Since variational distribution qθ(ω) approximates to the posterior, the quality of approximation
depends on the family of distributions Q. Restricted family Q would help scalability but hurt
approximation. Graves [2011] and Blundell et al. [2015] specified qθ(ω) as product of normal
distribution invoking a mean field approximation. The mean field approximation with normal
distributions makes the problem scalable but normality assumption doubles the number of parameters
due to mean and variance, which makes optimization more challenging. Recently, Gal [2016] proved
that a dropout neural network is equivalent to a specific variational approximation in a Bayesian
neural network. With this justification, they proposed a method to estimate predictive uncertainty
through variational distribution.

Kendall and Gal [2017] further improved the method of Gal [2016] by decomposing the source
of uncertainty into aleatoric and epistemic where the former captures irreducible variability due to
randomness of outcomes, and the latter, variability arising from estimation. The decomposition was
devised through the last layer with extra nodes to learn the variance. Our approach is to construct
a variational inference based on the arguments of Gal [2016] and aim to decompose the source of
uncertainty without adding extra components to learn the variance as in Kendall and Gal [2017].

3 Uncertainty estimation in classification

3.1 Aleatoric uncertainty and epistemic uncertainty

Though the proposed method can be applied to any Bayesian inferences, we present the followings in
the context of variational inference to make a comparison with the previous study [Kendall and Gal,
2017]. Let θ̂ be the optimized variational parameter iteratively minimizing Monte Carlo approximated
version of the equation (1) [Ranganath et al., 2014]. At inference, we derive the variational predictive
distribution approximating the predictive distribution

qθ̂(y
∗ | x∗) =

∫
Ω

p(y∗ | x∗, ω)qθ̂(ω)dω,

then its estimator

q̂θ̂(y
∗ | x∗) =

1

T

T∑
t=1

p(y∗ | x∗, ω̂t)

converges in probability, where a set of realized vectors {ω̂t}Tt=1 is randomly drawn from variational
distribution qθ̂(ω) with the pre-defined sampling number T . Variance of the variational predictive
distribution qθ̂(y

∗ | x∗) is given by

V arqθ̂(y∗|x∗)(y
∗) = Eqθ̂(y∗|x∗){y∗⊗2} − Eqθ̂(y∗|x∗)(y

∗)⊗2,

=

∫
Ω

[diag{Ep(y∗|x∗,ω)(y
∗)} − Ep(y∗|x∗,ω)(y

∗)⊗2]qθ̂(ω)dω︸ ︷︷ ︸
aleatoric

,

+

∫
Ω

{
Ep(y∗|x∗,ω)(y

∗)− Eqθ̂(y∗|x∗)(y
∗)
}⊗2

qθ̂(ω)dω︸ ︷︷ ︸
epistemic

, (2)

where v⊗2 = vvT , Eqθ̂(y∗|x∗){g(y∗)} =
∫
g(y∗)qθ̂(y

∗ | x∗)dy∗, Ep(y∗|x∗,ω){g(y∗)} =∫
g(y∗)p(y∗ | x∗, ω)dy∗ for any measurable function g, and diag(v) is a diagonal matrix with

elements of the vector v. The first equation is obtained by definition of variance, and the second one
is from a variant of law of the total variance. The detailed derivation is provided in Appendix A.

Under Bayesian framework, ω is random, and whenever evaluation of y∗ is made for given
x∗, different features are formed and each feature is weighed differently to determine p(ω) =
Softmax{fω(x∗)}. The predictive uncertainty is Eqθ̂(y∗|x∗){y∗⊗2} − Eqθ̂(y∗|x∗)(y

∗)⊗2. The
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aleatoric uncertainty, E[diag{p(ω)}−p(ω)⊗2] where the expectation is over qθ̂(ω), captures inherent
randomness of an output y∗. The epistemic uncertainty, E[p(ω) − E{p(ω)}]⊗2, comes from the
variability of ω given data. This quantity reduces as the sample size increases. That is, the classifier’s
weighting scheme becomes less variable as the sample size increase.

3.2 Proposed method

Kendall and Gal [2017] developed a novel way to directly estimate these two types of uncertainties.
They constructed a Bayesian neural network model with the last layer before activation consisting
of mean and variance of logits. We denote by fωkendall(x

∗) = (µ, σ2) the last 2K-dimensional
pre-activated linear output of the neural network, where µ and σ2 represent the mean and the variance
of K nodes. For the realized vectors {ω̂t}Tt=1 and the corresponding outputs f ω̂tkendall(x

∗) = (µ̂t, σ̂
2
t ),

they suggested an estimator of two types of uncertainty as

1

T

T∑
t=1

diag(σ̂2
t )︸ ︷︷ ︸

aleatoric

+
1

T

T∑
t=1

(µ̂t − µ̄)⊗2

︸ ︷︷ ︸
epistemic

, (3)

where µ̄ =
∑T
t=1 µ̂t/T .

Quantifying uncertainty by the equation (3) has at least two limitations for use with classification.
First, the equation (3) models the variability of the linear predictors, not the predictive probabilities
and ignores the fact that the covariance matrix of a multinomial random variable is a function of the
mean vector. For example, in binary classification, the predicted values closer to 0 or 1 have a small
variance. Deep neural networks for classification are generalized linear models with error structure of
multinomial and composite link functions, and therefore the variance of the multinomial outcome is a
function of the mean. Another limitation is that the aleatoric uncertainty does not reflect correlations
due to a diagonal matrix modeling. To solve these problems, we fix the dimension of the last layer as
K and propose the estimator for predictive uncertainty by

1

T

T∑
t=1

diag(p̂t)− p̂⊗2
t︸ ︷︷ ︸

aleatoric

+
1

T

T∑
t=1

(p̂t − p̄)⊗2

︸ ︷︷ ︸
epistemic

, (4)

where p̄ =
∑T
t=1 p̂t/T and p̂t = p(ω̂t) = Softmax{f ω̂t(x∗)}. The proposed method directly

computes the variability of the predictive probability and does not involve extra σ2 term. In the
computational aspects, the proposed method does not need extra sampling steps to obtain prediction.
By eliminating extra parameters σ2, we can reduce the number of parameters and operations. The
two terms in equation (4) respectively converge in probability to equation (2) as T increases.

4 Experimental results

In this section, we use the public medical imaging datasets from Ischemic Stroke Lesion Segmentation
(ISLES) Challenges to demonstrate the merit of the proposed method.

4.1 Datasets

The International Conference on the Medical Image Computing and Computer-Assisted Intervention
(MICCAI) is hosting the ISLES challenges annually since 2015. We restrict our focus to the
comparison of the two datasets from the 2015 ISLES Challenges. One is sub-acute ischemic stroke
lesion segmentation (SISS), and the other is acute stroke perfusion estimation (SPES). The main task
for both competitions is to construct an automatic ischemic stroke lesion segmentation model. For
both competitions, multiple 3-dimensional magnetic resonance imaging (MRI) sequences and ground
truth locating stroke lesion are given. Comparison of the two datasets are briefly summarized in Table
1 and detailed information can be found in Maier et al. [2017].
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SISS SPES
Number of subjects 28 30

Total number of voxels 227 M 22 M
Average size of the target image 230× 230× 154 96× 110× 72

MRI sequences DWI, FLAIR TTP, Tmax, CBV, CBF
T1, T2 T1c, T2, DWI

Proportion of stroke lesion 0.54% (0.73%) 2.51% (1.11%)Mean (Standard devitation)
M, million; DWI, diffusion weighted imaging; FLAIR, fluid attenuation inversion recovery; T1, T1-weighted;
T2, T2-weighted; TTP, time-to-peak; Tmax, time-to-max; CBV, cerebral blood volume; CBF, cerebral blood,
flow; T1c, T1 contrast enhanced.

Table 1: Comparison of the SISS and SPES datasets.

4.2 Evaluations

First, we applied the proposed method and that by Kendall and Gal [2017] to SISS and SPES datasets.
The implementation details are provided in Appendix B. Figure 1 presents a slice of original MRI
image, estimates of aleatory, epistemic, and the sum, labeled by predictive uncertainties along with
the predicted lesion and the ground truth. We present the Flair and DWI images as the original MRI
image from SISS and SPES dataset, respectively, since the ground truth segmentation was made
from respective imaging modes. These images are known to represent the core area of stroke well
[Maier et al., 2017]. Bright color represents large values. The rows labeled by ‘P’ and ‘K’ indicate
the proposed and the method by Kendall and Gal [2017], respectively.

Figure 1: Visual comparisons of uncertainty quantification methods using the user ‘14’ of the SISS
dataset (row 1 and 2) and the user ‘3’ of the SPES dataset (row 3 and 4). Row ‘P’ and ‘K’ indicate the
proposed method and the uncertainty quantification method by Kendall and Gal [2017], respectively.

Although both methods produced similar predicted values, there were substantial differences in the
uncertainty maps. In our experiments, the aleatoric uncertainty terms, the extra parameter in Kendall
and Gal [2017] converged to zero and uncertainty image maps produced by Kendall and Gal [2017]
provided little information. The proposed maps show aleatoric, epistemic and combined uncertainties.
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First, the main source of uncertainty came from the aleatoric part. Second, the boundaries were shown
to be more uncertain than the interior regions. In the images shown in Figure 1, the uncertainty maps
provided extra information in addition to the prediction map. When the prediction map disagrees
with the ground truth, the uncertainty maps identified the stroke region missed by prediction map. In
SISS-user-14, the proposed prediction map incorrectly identified non-stroke region as stroke, and the
uncertainty map reflected a lack of confidence around the incorrectly identified region. The prediction
map from the SPES-user-3 partially failed to identify some lesion locations but the uncertainty maps
recovered the missed region close to the ground truth. More visual results are provided in Appendix
C.

4.3 Implication of difference in resolution or voxel numbers

We conducted a comparison study using the proposed equation (4) between SISS and SPES datasets.
The main difference between the two datasets is in the number of voxels originating from the disparate
resolutions of the images. The number of subjects is comparable for SISS and SPES. In segmentation
tasks, unit of analysis is a voxel and the outcomes constitute high-dimensional multivariate binary
random variables. Since the voxels are not independent, the number of voxels does not directly
translate to the sample size. On the other hand, the voxels are not perfectly correlated, and the
effective sample size is between the number of voxels and the number of cases [Fleiss et al., 2003].
In this regard, the effective sample size is bigger in SISS than SPES. Recall that aleatoric uncertainty
is irreducible but the epistemic uncertainty decreases with the sample size. Therefore we anticipate
the epistemic uncertainty to be smaller for SISS.

To verify this, we examined bivariate density plots for the aleatoric and epistemic uncertainties among
the top 1% data points with largest aleatoric uncertainty. Figure 2 shows bivariate density plots of
SISS on the left and SPES on the right. Quantified uncertainty tends to be smaller for SISS than
SPES. The SISS dataset also exhibits smaller epistemic uncertainty than SPES as anticipated. Similar
trends were observed when using the top 5% data.

Figure 2: Bivariate density plots for aleatoric and epistemic uncertainties among the top 1% data
points in terms of the aleatoric uncertainty. Left, SISS, and right, SPES datasets.

Table 2 compares the mean of the aleatoric and epistemic uncertainties of SPES and SISS. Five-folds
cross-validation was used for all computations for a fair comparison between the two datasets. The
aleatoric uncertainty of SPES is about five times as large as that of SISS. Considering that the aleatoric
uncertainty measures irreducible variability and depends on the predicted values, a large aleatoric
uncertainty for SPES may be due to that the marginal proportion is larger for SPES than SISS as
shown in Table 1. The epistemic uncertainty of SISS is smaller than that of SPES as anticipated since
the epistemic uncertainty decreases with the effective sample size.

SISS SPES
Aleatoric 7.6× 10−4 3.6× 10−3

Epistemic 2.2× 10−5 1.4× 10−4

Table 2: Comparison of the averages of aleatoric and epistemic uncertainties of the SISS and SPES
datasets.
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Since the variability of a binary random variable depends on the mean, the difference in the aleatoric
uncertainty can confound the comparison of the epistemic uncertainty. To circumvent this problem,
we compared the estimated conditional expectations of the epistemic uncertainty given ranges of the
aleatoric uncertainty. The results are given in Table 3. Although the differences are small, there is a
coherent trend that the epistemic uncertainty is smaller for the SISS dataset than for the SPES dataset
by 5-10%.

SISS SPES
E(Epistemic | 0.05 < Aleatoric < 0.1) 4.4× 10−4 4.6× 10−4

E(Epistemic | 0.1 < Aleatoric < 0.15) 8.9× 10−4 9.4× 10−4

E(Epistemic | 0.15 < Aleatoric < 0.2) 13.8× 10−4 14.5× 10−4

E(Epistemic | 0.2 < Aleatoric < 0.25) 17.6× 10−4 19.4× 10−4

Table 3: Comparison of the conditional expectation of epistemic uncertainty given an aleatoric
intervals for the SISS and SPES datasets.

5 Conclusion and discussion

In this paper, we presented a natural way to quantify uncertainty of classification in Bayesian neural
networks by decomposing the uncertainty into two types. The proposed method has advantages in
that the inherent variability is expressed in terms of the underlying distribution of the outcome and has
the practical advantage of numerical stability. Application of our method to ISLES datasets provided
additional insights into the corresponding medical imaging analysis with point estimation alone.

We acknowledge that variational variability may not be a good approximation of the posterior variance.
However, the epistemic uncertainty can be useful in comparing the variability due to the effective
sample size. Our comparison study between the two datasets with differential information supports
the utility of the epistemic uncertainty.

The proposed method of uncertainty quantification is applied in the variational inference setting in
this paper. However, it can be applied to general Bayesian setting and to broader variational inference
problems. For example, the equation (4) can be exploited when the class of family Q is enlarged as
in [Miller et al., 2016, Louizos and Welling, 2017b], or when different divergence metrics are used
([Li and Gal, 2017, Dieng et al., 2017]). Extension of the proposed method to different settings can
be future research topics.
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In this appendix material, we present (A) a derivation of the equation (2), (B) implementation details,
and (C) additional visualization results.

A Derivation of the equation (2)

Recall that Equation (2) is given by

V arqθ̂(y∗|x∗)(y
∗) = Eqθ̂(y∗|x∗){y∗⊗2} − Eqθ̂(y∗|x∗)(y

∗)⊗2,

=

∫
Ω

[diag{Ep(y∗|x∗,ω)(y
∗)} − Ep(y∗|x∗,ω)(y

∗)⊗2]qθ̂(ω)dω︸ ︷︷ ︸
aleatoric

,

+

∫
Ω

{
Ep(y∗|x∗,ω)(y

∗)− Eqθ̂(y∗|x∗)(y
∗)
}⊗2

qθ̂(ω)dω︸ ︷︷ ︸
epistemic

,

where v⊗2 = vvT , Eqθ̂(y∗|x∗){g(y∗)} =
∫
g(y∗)qθ̂(y

∗ | x∗)dy∗, Ep(y∗|x∗,ω){g(y∗)} =∫
g(y∗)p(y∗ | x∗, ω)dy∗ for any measurable function g, and diag(v) is a diagonal matrix with

elements of the vector v.

Proof. The first equation follows from the definition of variance and it is enough to show the second
equation. From the definition of Eqθ̂(y∗|x∗){g(y∗)} and by Fubini’s Theorem, we have

Eqθ̂(y∗|x∗)(y
∗) :=

∫
y∗qθ̂(y

∗ | x∗)dy∗,

=

∫
y∗

∫
Ω

p(y∗ | x∗, ω)qθ̂(ω)dωdy
∗,

=

∫
Ω

∫
y∗p(y∗ | x∗, ω)dy∗qθ̂(ω)dω,

=

∫
Ω

Ep(y∗|x∗,ω)(y
∗)qθ̂(ω)dω, (A.1)
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and similarly,

Eqθ̂(y∗|x∗)(y
∗⊗2) :=

∫
y∗⊗2qθ̂(y

∗ | x∗)dy∗,

=

∫
y∗⊗2

∫
Ω

p(y∗ | x∗, ω)qθ̂(ω)dωdy
∗,

=

∫
Ω

∫
y∗⊗2p(y∗ | x∗, ω)dy∗qθ̂(ω)dω,

=

∫
Ω

Ep(y∗|x∗,ω)(y
∗⊗2)qθ̂(ω)dω,

=

∫
Ω

{V arp(y∗|x∗,ω)(y
∗) + Ep(y∗|x∗,ω)(y

∗)⊗2}qθ̂(ω)dω,

where V arp(y∗|x∗,ω)(y
∗) := Ep(y∗|x∗,ω)(y

∗⊗2) − Ep(y∗|x∗,ω)(y
∗)⊗2 = Ep(y∗|x∗,ω){diag(y∗)} −

Ep(y∗|x∗,ω)(y
∗)⊗2 because y∗ is one-hot encoded.

Thus,

Eqθ̂(y∗|x∗){y∗⊗2} − Eqθ̂(y∗|x∗)(y
∗)⊗2,

=

∫
Ω

{V arp(y∗|x∗,ω)(y
∗) + Ep(y∗|x∗,ω)(y

∗)⊗2}qθ̂(ω)dω − Eqθ̂(y∗|x∗)(y
∗)⊗2,

=

∫
Ω

V arp(y∗|x∗,ω)(y
∗)qθ̂(ω)dω +

∫
Ω

{Ep(y∗|x∗,ω)(y
∗)⊗2 − Eqθ̂(y∗|x∗)(y

∗)⊗2}qθ̂(ω)dω,

=

∫
Ω

[Ep(y∗|x∗,ω){diag(y∗)} − Ep(y∗|x∗,ω)(y
∗)⊗2]qθ̂(ω)dω,

+

∫
Ω

{Ep(y∗|x∗,ω)(y
∗)⊗2 − Eqθ̂(y∗|x∗)(y

∗)⊗2}qθ̂(ω)dω,

=

∫
Ω

[diag{Ep(y∗|x∗,ω)(y
∗)} − Ep(y∗|x∗,ω)(y

∗)⊗2]qθ̂(ω)dω,

+

∫
Ω

{Ep(y∗|x∗,ω)(y
∗)⊗2 − Eqθ̂(y∗|x∗)(y

∗)⊗2}qθ̂(ω)dω,

=

∫
Ω

[diag{Ep(y∗|x∗,ω)(y
∗)} − Ep(y∗|x∗,ω)(y

∗)⊗2]qθ̂(ω)dω,

+

∫
Ω

{
Ep(y∗|x∗,ω)(y

∗)− Eqθ̂(y∗|x∗)(y
∗)
}⊗2

qθ̂(ω)dω,

The second last equation holds from commutativity of a diagonal operation and an expectation. The
last the equation is from the equation (A.1).

B Implementation details

Our learning process and implementations details mostly followed the method as proposed in section
2.1 of Choi et al. [2016]. We trained neural networks through patch learning and omitted the fine-
tuning step which was turned out to be not effective in terms of Dice coefficients. For Bayesian
learning, the variational inference with dropout variational distribution [Gal, 2016] was used and the
number of realized sets T used in the Monte Carlo integration were five.

Figure B.1 shows our network architecture, the 3D multiscale residual U-Net [Choi et al., 2016]
without residual blocks. The total number of parameters were around 293k. For the method by
Kendall and Gal [2017], we removed the softmax activation layer and changed the number of channels
in the last convolutional layer from 1 to 2. Then, we randomly drew a sample from normal distribution
using the network outputs, and used it to compute numerically-stable stochastic loss, which is a
numerical stable version of a negative log likelihood function, given by Kendall and Gal [2017].

We used the following hyper-parameters. All the MRI sequences were resized to the same dimension:
(width × height × depth) = (100 × 100 × 72). For pre-processing step, we extracted 600 patches
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Figure B.1: Visual description of the main network architecture. The ‘ConvBlock’ is made up of
three dimensional convolutional layer, ELU activation [Clevert et al., 2015], and batch normalization
layer [Ioffe and Szegedy, 2015]. The numbers in parenthesis denote the number of channels and
kernel size in three dimension.

with the size of (width × height × depth) = (16 × 16 × 16). All the weights were initialized as [He
et al., 2015]. The Adam optimizer with the learning rate of 0.0002 [Kingma and Ba, 2014] and an
early stopping rule with 10-epoch patience were applied and batch size was 16. The negative log
likelihood function was used as a loss function. The Implementations utilized Keras and Theano. The
main Python scripts are public at http://github.com/ykwon0407/UQ_BNN.

C Additional visualization results

In Figure C.1, we presented additional visualization results comparing proposed method with the
method by [Kendall and Gal, 2017]. Row ‘K’ and ‘P’ indicate the uncertainty quantification method
by Kendall and Gal [2017] and the proposed method, respectively. In multiple examples, the proposed
method demonstrates informative uncertainty maps.
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